# Time Complexity of Recursive Algorithms 

Mohammed Yaseen Mowzer

April 11, 2014

## Definitions

The asymptotic tight bound
$\Theta(g(n))=f(n) \Longleftrightarrow \exists c_{1} \exists c_{2} \forall n \geq n_{0}$ s.t. $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
The asymptotic upper bound

$$
O(g(n))=f(n) \Longleftrightarrow \exists c_{1} \forall n \geq n_{0} \text { s.t. } 0 \leq c_{1} g(n) \leq f(n)
$$

The asymptotic lower bound

$$
\Omega(g(n))=f(n) \Longleftrightarrow \exists c_{1} \forall n \geq n_{0} \text { s.t. } 0 \leq f(n) \leq c_{1} g(n)
$$

## Mergesort

Divide Divide the $n$-element sequence to be sorted into two subsequences of $n / 2$ elements each.
Conquer Sort the two sequences recursively using mergesort. Combine Merge the two sorted sequences to produce the answer.

## The General Recurrence Relation

- We can define the time complexity in terms of a recurrence relation.
- If we conquer $a$ problems of size $n / b$
- If $\mathrm{D}(\mathrm{n})$ is the time taken to divide the problem
- If $\mathrm{C}(\mathrm{n})$ is the time take to combine the problem

$$
T(n)=a T(n / b)+D(n)+C(n)
$$

## Recurrence for Mergesort

- We conquer 2 problems of size $n / 2$
- The time it takes to divide the sequence is constant $\Theta(1)$
- The time it takes to combine the problem is $\Theta(n)$

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(1)+\Theta(n) \\
& T(n)=2 T(n / 2)+\Theta(n)
\end{aligned}
$$

because a linear function plus a constant function is a linear function.

## Methods for Finding the Time Complexity

Recursion-tree method Convert the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.

Subsitution method Guess a bound then prove it with mathematical induction.
Master method provides bounds for any recurrence of the form

$$
T(n)=a T(n / b)+f(n)
$$

## Substitution method

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& T(n)=2 T(n / 2)+c n \\
& T(n)=2 T(n / 2)+n \\
& T(n)=n+2(n / 2+2 T(n / 4)) \\
& T(n)=n+n+4(n / 4+2 T(n / 8)) \\
& T(n)=n+n+n+8(n / 8+2 T(n / 16))
\end{aligned}
$$

We can guess that $T(n)=O(n \log (n))$

## Induction

Assume $T(\lfloor n / 2\rfloor)=O(n \log n)$

$$
\begin{aligned}
& T(n) \leq 2 T(\lfloor n / 2\rfloor)+n \\
& T(n)=2 O(\lfloor n / 2\rfloor \log \lfloor n / 2\rfloor)+n \\
& T(n)=2 c\lfloor n / 2\rfloor \log \lfloor n / 2\rfloor+n \\
& T(n) \leq c n \log n / 2+n \\
& T(n)=c n \log n-c n \log 2+n \\
& T(n)=c n \log n-c n+n \\
& T(n) \leq c n \log n \\
& T(n)=O(n \log n)
\end{aligned}
$$

## Induction must be Precise

Suppose you had the recurrence

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+1
$$

We can guess that the time complexity is $T(n)=O(n)$. We are required to show that $T(n) \leq c n$ for some $c$.

$$
\begin{aligned}
T(n) & \leq c\lfloor n / 2\rfloor+c\lceil n / 2\rceil+1 \\
T(n) & =c n+1
\end{aligned}
$$

This does not satisfy the induction. We cannot drop the +1 in this case.

## Assume Stronger Induction Hypothesis

Assume $T(k) \leq c k-d$ for some $k$. We now need to prove $T(n) \leq c n-d$

$$
\begin{aligned}
T(n) & \leq(c\lfloor n / 2\rfloor-d)+(c\lceil n / 2\rceil-d)+1 \\
& =c n=2 d+1 \\
& \leq c n-d
\end{aligned}
$$

Which is what we were required to prove.

## The Master Method

The master method can be used to solve all recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1$ and $b>1$.
The master method consists of three cases.

## The Master Theorem

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where $n / b$ is either $\lfloor n / b\rfloor$ and $\lceil n / b\rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n)=O\left(n^{\log _{b}(a)-\varepsilon}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. If $f(n)=\Theta\left(n^{\log _{n}(a)}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log _{2} n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b}(a)+\varepsilon}\right)$ for $\varepsilon>0$ and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n , then

$$
T(n)=\Theta(f(n))
$$

## Limitations on the master theorem

- In case $1 f(n)$ is not just asymptotically smaller it is polynomially smaller than $n{ }^{\log _{b} a}$
- In case $3 f(n)$ is not just asymptotically larger it is polynomially larger than $n^{\log _{b} a}$
- The master theorem fails when $f(n)$ is smaller than $n^{\log _{b} a}$ but not polynomially smaller.
- The master theorem fails when $f(n)$ is larger than $n^{\log _{b} a}$ but not polynomially larger.
- The master theorem fails when the regularity condition for case 3, $a f(n / b)<c(f(n))$, does not hold.


## Using the master method

$$
T(n)=9 T(n / 3)+n
$$

So $a=9, b=3, f(n)=n$
$O\left(n^{\log _{b} a}\right)=O\left(n^{\log _{3} 9}\right)=O\left(n^{2}\right)$. So $f(n)=O\left(n^{2-\varepsilon}\right)$
This is case 1 of the master theorem. So $T(n)=\Theta\left(n^{2}\right)$

## Using the master method

$$
T(n)=T(2 n / 3)+1
$$

So $a=1, b=3 / 2, f(n)=1$
$O\left(n^{\log _{b} a}\right)=O\left(n^{\log _{3 / 2} 1}\right)=O\left(n^{0}\right)$. So $f(n)=\Theta(1)$
This is case 2 of the master theorem. So $T(n)=\Theta\left(\log _{2}(n)\right)$

## Using the master method

$$
T(n)=3 T(n / 4)+n \log _{2} n
$$

So $a=3, b=4, f(n)=1$
$O\left(n^{\log _{b} a}\right)=O\left(n^{\log _{4} 3}\right) \approx O\left(n^{0} .793\right)$. So $f(n)=\Omega\left(n^{0.793+\varepsilon}\right)$
$a f(n / b)=3(n / 4) \log _{2}(n / 4) \leq(3 / 4) n \log _{2}(n)=c f(n)$ for $c=3 / 4$
This is case 3 of the master theorem. So $T(n)=\Theta\left(n \log _{2}(n)\right)$

## Using the master method

$$
T(n)=2 T(n / 2)+n \log _{2} n
$$

So $a=2, b=2, f(n)=n \log _{2} n$
$O\left(n^{\log _{b} a}\right)=O(n)$
This satisfies none of the conditions, since $f(n)$ is asymptotically bigger than $n$ so it will not satisfy case 1 or 2 but it is not polynomially bigger so it will not satisfy case 3 . So the master method does not apply.

## Bibliography

Thomas H. Corman, Introduction to alogorithms, Ch. 3, 4

